Carnegie Mellon University Heinzcollege

94-775/95-865 Lecture 4: Manifold learning

George Chen

PCA reorients data so axes explain variance in "decreasing order" \rightarrow can "flatten" (project) data onto a few axes that captures most variance

Image source: http://4.bp.blogspot.com/-USQEgoh1jCU/NfncdNOETcl/AAAAAAAAGp8/ Hea8UtE_1c0/s1600/Blog\%2B1\%2BIMG_1821.jpg

2D Swiss Roll

PCA would just flatten this thing and lose the information that the data actually lives on a 1D line that has been curved!

Image source: http://4.bp.blogspot.com/-USQEgoh1jCU/NfncdNOETcl/AAAAAAAAGp8/ Hea8UtE_1c0/s1600/Blog\%2B1\%2BIMG_1821.jpg

2D Swiss Roll

2D Swiss Roll

2D Swiss Roll

2D Swiss Roll

2D Swiss Roll

2D Swiss Roll

This is the desired result

Manifold Learning

- Nonlinear dimensionality reduction (in contrast to PCA which is linear)
- Find low-dimensional "manifold" that the data live on

Basic idea of a manifold:

1. Zoom in on any point (say, x)
2. The points near x look like they're in a lower-dimensional

Euclidean space
(e.g., a 2D plane in Swiss roll)

Do Data Actually Live on Manifolds?

Image source: http://www.columbia.edu/~jwp2128/Images/faces.jpeg

Do Data Actually Live on Manifolds?

Image source: http://www.adityathakker.com/wp-content/uploads/2017/06/word-embeddings-994x675.png

Do Data Actually Live on Manifolds?

Mnih, Volodymyr, et al. Human-level control through deep reinforcement learning. Nature 2015.

Manifold Learning with Isomap

Step 1: For each point, find its nearest neighbors, and build a road ("edge") between them

Step 2: Compute shortest distance from each point to every other point where you're only allowed to travel on the roads
Step 3: It turns out that given all the distances between pairs of points, we can compute what the points should be (the algorithm for this is called multidimensional scaling)

Isomap Calculation Example

In orange: road lengths
2 nearest neighbors of A : B, C

2 nearest neighbors of B : A, C
2 nearest neighbors of C : B, D
2 nearest neighbors of $\mathrm{D}: \mathrm{C}, \mathrm{E}$
2 nearest neighbors of $E: C, D$
Build "symmetric 2-NN" graph (add edges for each point to its 2 nearest neighbors)

Shortest distances between every point to every other point where we are only allowed to travel along the roads

	A	B	C	D
A				E
B				
C				
D				
E				

Isomap Calculation Example

In orange: road lengths
2 nearest neighbors of A : B, C

2 nearest neighbors of B : A, C
2 nearest neighbors of C : B, D
2 nearest neighbors of $\mathrm{D}: \mathrm{C}, \mathrm{E}$
2 nearest neighbors of E : C, D
Build "symmetric 2-NN" graph (add edges for each point to its 2 nearest neighbors)

Shortest distances between every point to every other point where we are only allowed to travel along the roads

	A	B	C	D
A	0			
B		0		
C			0	
D				0
E				

Isomap Calculation Example

In orange: road lengths
2 nearest neighbors of A : B, C

2 nearest neighbors of B : A, C
2 nearest neighbors of C : B, D
2 nearest neighbors of $\mathrm{D}: \mathrm{C}, \mathrm{E}$
2 nearest neighbors of $E: C, D$
Build "symmetric 2-NN" graph (add edges for each point to its 2 nearest neighbors)

Shortest distances between every point to every other point where we are only allowed to travel along the roads

	A	B	C	D
A	0	5		
B		0	5	
C			0	5
D				0
E				

Isomap Calculation Example

In orange: road lengths
2 nearest neighbors of A : B, C

2 nearest neighbors of B : A, C
2 nearest neighbors of C : B, D
2 nearest neighbors of $\mathrm{D}: \mathrm{C}, \mathrm{E}$
2 nearest neighbors of E : C, D
Build "symmetric 2-NN" graph (add edges for each point to its 2 nearest neighbors)

Shortest distances between every point to every other point where we are only allowed to travel along the roads

	A	B	C	D
A	0	5	8	
B		0	5	
C			0	5
D				0
E				

Isomap Calculation Example

In orange: road lengths
2 nearest neighbors of A : B, C

2 nearest neighbors of B : A, C
2 nearest neighbors of C : B, D
2 nearest neighbors of $\mathrm{D}: \mathrm{C}, \mathrm{E}$
2 nearest neighbors of $E: C, D$
Build "symmetric 2-NN" graph (add edges for each point to its 2 nearest neighbors)

Shortest distances between every point to every other point where we are only allowed to travel along the roads

	A	B	C	D
A	0	5	8	13
B		0	5	
C			0	5
D				0
E				

Isomap Calculation Example

In orange: road lengths
2 nearest neighbors of A : B, C

2 nearest neighbors of B : A, C
2 nearest neighbors of C : B, D
2 nearest neighbors of $\mathrm{D}: \mathrm{C}, \mathrm{E}$
2 nearest neighbors of $E: C, D$
Build "symmetric 2-NN" graph (add edges for each point to its 2 nearest neighbors)

Shortest distances between every point to every other point where we are only allowed to travel along the roads

	A	B	C	D
A	0	5	8	13
B		0	5	16
C			0	5
D				0
E				

Isomap Calculation Example

In orange: road lengths
2 nearest neighbors of A : B, C

2 nearest neighbors of B : A, C
2 nearest neighbors of C : B, D
2 nearest neighbors of $\mathrm{D}: \mathrm{C}, \mathrm{E}$
2 nearest neighbors of $E: C, D$
Build "symmetric 2-NN" graph (add edges for each point to its 2 nearest neighbors)

Shortest distances between every point to every other point where we are only allowed to travel along the roads

	A	B	C	D
A	0	5	8	13
B		0	5	10
C			0	5
D				0
E				

Isomap Calculation Example

In orange: road lengths
2 nearest neighbors of A : B, C

2 nearest neighbors of B : A, C
2 nearest neighbors of C : B, D
2 nearest neighbors of $\mathrm{D}: \mathrm{C}, \mathrm{E}$
2 nearest neighbors of $E: C, D$
Build "symmetric 2-NN" graph (add edges for each point to its 2 nearest neighbors)

Shortest distances between every point to every other point where we are only allowed to travel along the roads

	A	B	C	D
A	0	5	8	13
B		0	5	10
C			0	5
D				0
E				

Isomap Calculation Example

In orange: road lengths
2 nearest neighbors of A : B, C

2 nearest neighbors of B : A, C
2 nearest neighbors of C : B, D
2 nearest neighbors of $\mathrm{D}: \mathrm{C}, \mathrm{E}$
2 nearest neighbors of E : C, D
Build "symmetric 2-NN" graph (add edges for each point to its 2 nearest neighbors)

Shortest distances between every point to every other point where we are only allowed to travel along the roads

	A	B	C	D
A	0	5	8	13
B		0	5	10
C			0	5
D				0
E				

Isomap Calculation Example

In orange: road lengths
2 nearest neighbors of A : B, C

2 nearest neighbors of B : A, C
2 nearest neighbors of C : B, D
2 nearest neighbors of D : C, E
2 nearest neighbors of E : C, D
Build "symmetric 2-NN" graph (add edges for each point to its 2 nearest neighbors)

Shortest distances between every point to every other point where we are only allowed to travel along the roads

	A	B	C	D
A	0	5	8	13
B	5	0	5	10
C	8	5	0	5
D	13	10	5	0
E	16	13	8	5

Isomap Calculation Example

In orange: road lengths 2 nearest neighbors of A : B, C

2 nearest neighbors of B : A, C
2 nearest neighbors of C : B, D
2 nearest neighbors of $\mathrm{D}: \mathrm{C}, \mathrm{E}$
2 nearest neighbors of $E: C, D$
Build "symmetric 2-NN" graph (add edges for each point to its 2 nearest neighbors)

Shortest distances between every point to every other point where we are only allowed to travel along the roads

	A	B	C	D	E
A	0	5	8	13	16
B	This matrix gets fed into				
multidimensional scaling to get					
C	1D version of A, B, C, D, E				
D	The solution is not unique!				
E	16	13	8	5	0

Isomap Calculation Example

Demo

3D Swiss Roll Example

Joshua B. Tenenbaum, Vin de Silva, John C. Langford. A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science 2000.

Some Observations on Isomap

\downarrow The quality of the eresult critically depends on the nearest neighbor graph

Emphasize local structure

Ask for nearest neighbors to be really close by
There might not be enough edges

Emphasize global structure
Allow for nearest neighbors to be farther away
Might connect points that shouldn't be connected

In general: try different parameters for nearest neighbor graph construction when using Isomap + visualize

t-SNE

(t-distributed stochastic neighbor embedding)

t-SNE High-Level Idea \#1

- Don't use deterministic definition of which points are neighbors
- Use probabilistic notation instead

t-SNE High-Level Idea \#2

- In low-dim. space (e.g., 1D), suppose we just randomly assigned coordinates as a candidate for a low-dimensional representation for A, B, C, D, E (I'll denote them with primes):

- With any such candidate choice, we can define a probability distribution for these low-dimensional points being similar

t-SNE High-Level Idea \#3

- Keep improving low-dimensional representation to make the following two distributions look as closely alike as possible

This distribution changes as we move around low-dim. points

t-SNE

Low perplexity value

Also: play with learning rate, \# iterations
In practice, often people initialize with PCA
There are some other parameters (less critical)

Manifold Learning with t-SNE

Demo

t-SNE Interpretation

https://distill.pub/2016/misread-tsne/

Dimensionality Reduction for Visualization

- There are many methods (I've posted a link on the course webpage to a scikit-learn example using ~10 methods)
- PCA is very well-understood; the new axes can be interpreted
- Nonlinear dimensionality reduction: new axes may not really be all that interpretable (you can scale axes, shift all points, etc)
- PCA and t-SNE are good candidates for methods to try first
- If you have good reason to believe that only certain features matter, of course you could restrict your analysis to those!

